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RAM is your computer’s main memory bank, a large multi-purpose space which stores all the data
used by programs running on your computer. That includes the program code itself as well as the
code at the core of the operating system. The CPU always reads machine code directly from RAM,

.and code can't be run if it isn’t loaded into RAM

The CPU stores an instruction pointer which points to the location in RAM where it's going to fetch
the next instruction. After executing each instruction, the CPU moves the pointer and repeats. This

.is the fetch-execute cycle

Fetch

Read instruction from memory at the
current instruction pointer.

Execute

Run the instruction and then move
the instruction pointer.

After executing an instruction, the pointer moves forward to immediately after the instruction in
RAM so that it now points to the next instruction. That's why code runs! The instruction pointer just
keeps chugging forward, executing machine code in the order in which it has been stored in
memory. Some instructions can tell the instruction pointer to jump somewhere else instead, or jump
different places depending on a certain condition; this makes reusable code and conditional logic

.possible

This instruction pointer is stored in a register. Registers are small storage buckets that are

extremely fast for the CPU to read and write to. Each CPU architecture has a fixed set of registers,


https://en.wikipedia.org/wiki/Processor_register

used for everything from storing temporary values during computations to configuring the

.processor
.Some registers are directly accessible from machine code, like ebx in the earlier diagram

Other registers are only used internally by the CPU, but can often be updated or read using
specialized instructions. One example is the instruction pointer, which can’t be read directly but can

.be updated with, for example, a jump instruction

Processors Are Naive

Let's go back to the original question: what happens when you run an executable program on your
computer? First, a bunch of magic happens to get ready to run it — we'll work through all of this later
— but at the end of the process there’s machine code in a file somewhere. The operating system
loads this into RAM and instructs the CPU to jump the instruction pointer to that position in RAM.

IThe CPU continues running its fetch-execute cycle as usual, so the program begins executing

This was one of those psyching-myself-out moments for me — seriously, this is how the program)
you are using to read this article is running! Your CPU is fetching your browser’s instructions from

(.RAM in sequence and directly executing them, and they’re rendering this article

Instruction Pointer

}

RAM: 83 C3

It turns out CPUs have a super basic worldview; they only see the current instruction pointer and a
bit of internal state. Processes are entirely operating system abstractions, not something CPUs

.natively understand or keep track of
waves hands* processes are abstractions made up by es-devs big byte to sell more computers*

:For me, this raises more questions than it answers



If the CPU doesn’t know about multiprocessing and just executes instructions sequentially, .1
why doesn't it get stuck inside whatever program it's running? How can multiple programs run
?at once

If programs run directly on the CPU, and the CPU can directly access RAM, why can’t code .2
?access memory from other processes, or, god forbid, the kernel

Speaking of which, what's the mechanism that prevents every process from running any .3

?instruction and doing anything to your computer? AND WHAT'S A DAMN SYSCALL

The question about memory deserves its own section and is covered in [chapter 5] — the TL;DR is
that most memory accesses actually go through a layer of misdirection that remaps the entire
address space. For now, we're going to pretend that programs can access all RAM directly and

.computers can only run one process at once. We'll explain away both of these assumptions in time

.It's time to leap through our first rabbit hole into a land filled with syscalls and security rings

?Aside: what is a kernel, btw

Your computer’s operating system, like macOS, Windows, or Linux, is the collection of software
that runs on your computer and makes all the basic stuff work. “Basic stuff” is a really general
term, and so is “operating system” — depending on who you ask, it can include such things as

.the apps, fonts, and icons that come with your computer by default

The kernel, however, is the core of the operating system. When you boot up your computer, the
instruction pointer starts at a program somewhere. That program is the kernel. The kernel has
near-full access to your computer's memory, peripherals, and other resources, and is in charge
of running software installed on your computer (known as userland programs). We'll learn
about how the kernel has this access — and how userland programs don’t — over the course of

.this article

Linux is just a kernel and needs plenty of userland software like shells and display servers to be
usable. The kernel in macOS is called XNU and is Unix-like, and the modern Windows kernel is
.called the NT Kernel


http://127.0.0.1:3000/the-translator-in-your-computer
https://en.wikipedia.org/wiki/XNU
https://en.wikipedia.org/wiki/Architecture_of_Windows_NT

Two Rings to Rule Them All

The mode (sometimes called privilege level or ring) a processor is in controls what it's allowed to
do. Modern architectures have at least two options: kernel/supervisor mode and user mode. While
an architecture might support more than two modes, only kernel mode and user mode are

.commonly used these days

In kernel mode, anything goes: the CPU is allowed to execute any supported instruction and access
any memory. In user mode, only a subset of instructions is allowed, I/0 and memory access is
limited, and many CPU settings are locked. Generally, the kernel and drivers run in kernel mode while

.applications run in user mode

Processors start in kernel mode. Before executing a program, the kernel initiates the switch to user

.mode

Kernel Mode User Mode
Read this protected Read this protected
memory! memory!

Here you go, dear :) No! Segmentation fault!

An example of how processor modes manifest in a real architecture: on x86-64, the current privilege

level (CPL) can be read from a register called cs (code segment). Specifically, the CPL is contained

in the two least significant bits of the cs register. Those two bits can store x86-64's four possible
rings: ring 0 is kernel mode and ring 3 is user mode. Rings 1 and 2 are designed for running drivers
but are only used by a handful of older niche operating systems. If the CPL bits are 11, for example,

.the CPU is running in ring 3: user mode

?What Even is a Syscall

Programs run in user mode because they can't be trusted with full access to the computer. User

mode does its job, preventing access to most of the computer — but programs need to be able to


https://en.wikipedia.org/wiki/Bit_numbering

access 1/0, allocate memory, and interact with the operating system somehow! To do so, software
running in user mode has to ask the operating system kernel for help. The OS can then implement

.its own security protections to prevent programs from doing anything malicious

If you've ever written code that interacts with the OS, you'll probably recognize functions like open,
read, fork, and exit. Below a couple of layers of abstraction, these functions all use system calls to
ask the OS for help. A system call is a special procedure that lets a program start a transition from

.user space to kernel space, jumping from the program’s code into OS code

User space to kernel space control transfers are accomplished using a processor feature called

:Software interrupts

During the boot process, the operating system stores a table called an interrupt vector table .1

(IVT; x86-64 calls this the interrupt descriptor table) in RAM and registers it with the CPU. The

VT maps interrupt numbers to handler code pointers

Interrupt Vector Table

# Handler Address

01 Ox3A28213A6339392C
02 Ox7363682EEE208A47
03 Ox2B290904B9B89815
04 OxF97CAD91A8D9B16C

So on and such forth...
Then, userland programs can use an instruction like INT which tells the processor to look up .2

the given interrupt number in the IVT, switch to kernel mode, and then jump the instruction

.pointer to the memory address stored in the IVT

When this kernel code finishes, it uses an instruction like IRET to tell the CPU to switch back to user

.mode and return the instruction pointer to where it was when the interrupt was triggered

If you were curious, the interrupt ID used for system calls on Linux is 0x8e. You can read a list of)

(.Linux system calls on Michael Kerrisk’s online manpage directory



https://en.wikipedia.org/wiki/Interrupt#Software_interrupts
https://en.wikipedia.org/wiki/Interrupt_vector_table
https://en.wikipedia.org/wiki/Interrupt_descriptor_table
https://www.felixcloutier.com/x86/intn:into:int3:int1
https://www.felixcloutier.com/x86/iret:iretd:iretq
https://man7.org/linux/man-pages/man2/syscalls.2.html

Wrapper APIs: Abstracting Away Interrupts

:Here's what we know so far about system calls

User mode programs can't access 1/0 or memory directly. They have to ask the OS for help
.interacting with the outside world

Programs can delegate control to the OS with special machine code instructions like INT and e
ARET

Programs can't directly switch privilege levels; software interrupts are safe because the
processor has been preconfigured by the OS with where in the OS code to jump to. The

.interrupt vector table can only be configured from kernel mode

Programs need to pass data to the operating system when triggering a syscall; the OS needs to
know which specific system call to execute alongside any data the syscall itself needs, for example,
what filename to open. The mechanism for passing this data varies by operating system and
architecture, but it's usually done by placing data in certain registers or on the stack before

.triggering the interrupt

The variance in how system calls are called across devices means it would be wildly impractical for
programmers to implement system calls themselves for every program. This would also mean
operating systems couldn’t change their interrupt handling for fear of breaking every program that
was written to use the old system. Finally, we typically don't write programs in raw assembly
anymore — programmers can’'t be expected to drop down to assembly any time they want to read a

file or allocate memory

0(001011\ Pile.4x+ 0(00101\

System calls are implemented differently across architectures.



So, operating systems provide an abstraction layer on top of these interrupts. Reusable higher-level
library functions that wrap the necessary assembly instructions are provided by libc on Unix-like
systems and part of a library called ntdll.dll on Windows. Calls to these library functions themselves
don’t cause switches to kernel mode, they're just standard function calls. Inside the libraries,
assembly code does actually transfer control to the kernel, and is a lot more platform-dependent

.than the wrapping library subroutine

When you call exit(1) from C running on a Unix-like system, that function is internally running
machine code to trigger an interrupt, after placing the system call's opcode and arguments in the

Iright registers/stack/whatever. Computers are so cool

The Need for Speed / Let’s Get CISC-y

Many CISC architectures like x86-64 contain instructions designed for system calls, created due to

.the prevalence of the system call paradigm

Intel and AMD managed not to coordinate very well on x86-64; it actually has two sets of optimized

system call instructions. SYSCALL and SYSENTER are optimized alternatives to instructions like INT

0x80. Their corresponding return instructions, SYSRET and SYSEXIT, are designed to transition

.quickly back to user space and resume program code

AMD and Intel processors have slightly different compatibility with these instructions. syscaALL is)
generally the best option for 64-bit programs, while sYSENTER has better support with 32-bit

(.programs

Representative of the style, RISC architectures tend not to have such special instructions. AArch64,

the RISC architecture Apple Silicon is based on, uses only one interrupt instruction for syscalls and

(: software interrupts alike. | think Mac users are doing fine

:Whew, that was a lot! Let's do a brief recap

Processors execute instructions in an infinite fetch-execute loop and don't have any concept *

of operating systems or programs. The processor’s mode, usually stored in a register,


https://www.gnu.org/software/libc/
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/libraries-and-headers
https://en.wikipedia.org/wiki/Complex_instruction_set_computer
https://www.felixcloutier.com/x86/syscall.html
https://www.felixcloutier.com/x86/sysenter
https://www.felixcloutier.com/x86/sysret.html
https://www.felixcloutier.com/x86/sysexit
https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://developer.arm.com/documentation/ddi0596/2021-12/Base-Instructions/SVC--Supervisor-Call-

determines what instructions may be executed. Operating system code runs in kernel mode
.and switches to user mode to run programs

To run a binary, the operating system switches to user mode and points the processor to the e
code’s entry point in RAM. Because they only have the privileges of user mode, programs that
want to interact with the world need to jump to OS code for help. System calls are a
.standardized way for programs to switch from user mode to kernel mode and into OS code

Programs typically use these syscalls by calling shared library functions. These wrap machine e
code for either software interrupts or architecture-specific syscall instructions that transfer
control to the OS kernel and switch rings. The kernel does its business and switches back to

.user mode and returns to the program code

:Let’s figure out how to answer my first question from earlier

If the CPU doesn’t keep track of more than one process and just executes instruction after
instruction, why doesn't it get stuck inside whatever program it’s running? How can multiple

?programs run at once

The answer to this, my dear friend, is also the answer to why Coldplay is so popular... clocks! (Well,

technically timers. | just wanted to shoehorn that joke in.)
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http://127.0.0.1:3000/the-translator-in-your-computer
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https://en.wikipedia.org/wiki/Kernel_preemption
https://en.wikipedia.org/wiki/Cooperative_multitasking

How to Run a Program :3 (J.a$

So far, we've covered how CPUs execute machine code loaded from executables, what ring-based
security is, and how syscalls work. In this section, we'll dive deep into the Linux kernel to figure out

.how programs are loaded and run in the first place
?We're specifically going to look at Linux on x86-64. Why

Linux is a fully featured production OS for desktop, mobile, and server use cases. Linux is
open source, so it's super easy to research just by reading its source code. | will be directly
Ireferencing some kernel code in this article

x86-64 is the architecture that most modern desktop computers use, and the target e
architecture of a lot of code. The subset of behavior | mention that is x86-64-specific will

.generalize well

Most of what we learn will generalize well to other operating systems and architectures, even if they

.differ in various specific ways

Basic Behavior of Exec Syscalls

User Space Kernel Space

Load and set up binary

“Run ./file.bin”

Try a binfmt
Supported?

No Yes!

SYSCALL instruction Start new process!

1
|
. execve("./file.bin", ...);
|
: (Replaces current)

Let's start with a very important system call: execve. It loads a program and, if successful, replaces

the current process with that program. A couple other syscalls (execlp, execvpe, etc.) exist, but they



.all layer on top of execve in various fashions

Aside: execveat

execve is actually built on top of execveat, @ more general syscall that runs a program with some
configuration options. For simplicity, we'll mostly talk about execve; the only difference is that it

.provides some defaults to execveat

Curious what ve stands for? The v means one parameter is the vector (list) of arguments (argv),
and the e means another parameter is the vector of environment variables (envp). Various other
exec syscalls have different suffixes to designate different call signatures. The at in execveat is

just “at”, because it specifies the location to run execve at

:The call signature of execve is

int execve(const char *filename, char *const argv[], char *const envp[]);

.The filename argument specifies a path to the program to run e

argv is a null-terminated (meaning the last item is a null pointer) list of arguments to the e
program. The argc argument you'll commonly see passed to C main functions is actually
.calculated later by the syscall, thus the null-termination

The envp argument contains another null-terminated list of environment variables used as *
context for the application. They're... conventionally KEY=VALUE pairs. Conventionally. | love

.computers

Fun fact! You know that convention where a program'’s first argument is the name of the program?
That's purely a convention, and isn’t actually set by the execve syscall itself! The first argument will
be whatever is passed to execve as the first item in the argv argument, even if it has nothing to do

.with the program name

Interestingly, execve does have some code that assumes argv[0] is the program name. More on this

.later when we talk about interpreted scripting languages



Step 0: Definition

We already know how syscalls work, but we've never seen a real-world code example! Let's look at

:the Linux kernel’s source code to see how execve is defined under the hood

fs/exec.c

2105  SYSCALL_DEFINE3(execve,

2106 const char __user *, filename,

2107 const char __user *const __user *, argv,
2108 const char __user *const __user *, envp)
2109 {

2110 return do_execve(getname(filename), argv, envp);
2111 3}

.SYSCALL_DEFINE3 is a macro for defining a 3-argument system call’'s code

| was curious why the arity is hardcoded in the macro name; | googled around and learned that

.this was a workaround to fix some security vulnerability

The filename argument is passed to a getname() function, which copies the string from user space to
kernel space and does some usage tracking things. It returns a filename struct, which is defined in
include/linux/fs.h. It stores a pointer to the original string in user space as well as a new pointer to

:the value copied to kernel space

include/linux/fs.h

2294  struct filename {

2295 const char *name; /* pointer to actual string */
2296 const __user char *uptr; /* original userland pointer */
2297 int refent;

2298 struct audit_names *aname;

2299 const char iname[];

2300 3

The execve system call then calls a do_execve() function. This, in turn, calls do_execveat_common()with
some defaults. The execveat syscall which | mentioned earlier also calls do_execveat_common(), but

.passes through more user-provided options


https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/fs/exec.c#L2105-L2111
https://en.wikipedia.org/wiki/Arity
https://nvd.nist.gov/vuln/detail/CVE-2009-0029
https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/include/linux/fs.h#L2294-L2300

:In the below snippet, I've included the definitions of both do_execve and do_execveat

fs/exec.c

2028 static int do_execve(struct filename *filename,

2029 const char __user *const __user *__argyv,

2030 const char __user *const __user *__envp)

2031

2032 struct user_arg_ptr argv = { .ptr.native = __argv };

2033 struct user_arg_ptr envp = { .ptr.native = __envp };

2034 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2035 3}

2036

2037 static int do_execveat(int fd, struct filename xfilename,

2038 const char __user *const __user *__argyv,

2039 const char __user *const __user *__envp,

2040 int flags)

2041 {

2042 struct user_arg_ptr argv = { .ptr.native = __argv };

2043 struct user_arg_ptr envp = { .ptr.native = __envp };

2044

2045 return do_execveat_common(fd, filename, argv, envp, flags);
2046 3}

[spacing sic]

In execveat, a file descriptor (a type of id that points to some resource) is passed to the syscall and

.then to do_execveat_common. This specifies the directory to execute the program relative to

In execve, a special value is used for the file descriptor argument, AT_Fbcwp. This is a shared constant
in the Linux kernel that tells functions to interpret pathnames as relative to the current working
directory. Functions that accept file descriptors usually include a manual check like

.if (fd == AT_FDCWD) { /* special codepath */ }

Step 1: Setup

We've now reached do_execveat_common, the core function handling program execution. We're going to

.take a brief step back from staring at code to get a bigger picture view of what this function does


https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/fs/exec.c#L2028-L2046

The first major job of do_execveat_common is setting up a struct called 1inux_binprm. | won't include a

:copy of the whole struct definition, but there are several important fields to go over

Data structures like mm_struct and vm_area_struct are defined to prepare virtual memory e
.management for the new program

.argc and envc are calculated and stored to be passed to the program e

filename and interp store the filename of the program and its interpreter, respectively. These e
start out equal to each other, but can change in some cases: one such case is when running
interpreted scripts with a shebang. When executing a Python program, for example, filename
.points to the source file but interp is the path to the Python interpreter

buf is an array filled with the first 256 bytes of the file to be executed. It's used to detect the e

.format of the file and load script shebangs

(.TIL: binprm stands for binary program)

:Let’s take a closer look at this buffer buf

linux_binprm @ include/linux/binfmts.h

64 char buf[BINPRM_BUF_SIZE];

As we can seg, its length is defined as the constant BINPRM_BUF_S1ZE. By searching the codebase for

:this string, we can find a definition for this in include/uapi/linux/binfmts.h
include/uapi/linux/binfmts.h

18 /* sizeof(linux_binprm->buf) */
19  #define BINPRM_BUF_SIZE 256

.So, the kernel loads the opening 256 bytes of the executed file into this memory buffer


https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/include/linux/binfmts.h#L15-L65
https://en.wikipedia.org/wiki/Shebang_(Unix)
https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/include/linux/binfmts.h#L64
https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/include/uapi/linux/binfmts.h#L18-L19

?Aside: what's a UAPI

You might notice that the above code’s path contains /uapi/. Why isn't the length defined in the

?same file as the linux_binprm struct, include/linux/binfmts.h

UAPI stands for “userspace APL.” In this case, it means someone decided that the length of the
buffer should be part of the kernel’s public API. In theory, everything UAPI is exposed to

.userland, and everything non-UAPI is private to kernel code

Kernel and user space code originally coexisted in one jumbled mass. In 2012, UAPI code was

.refactored into a separate directory as an attempt to improve maintainability

Step 2: Binfmts

The kernel’s next major job is iterating through a bunch of “binfmt” (binary format) handlers. These

handlers are defined in files like fs/binfmt_elf.c and fs/binfmt_flat.c. Kernel modules can also add

.their own binfmt handlers to the pool

Each handler exposes a load_binary() function which takes a 1inux_binprm struct and checks if the

.handler understands the program’s format

This often involves looking for magic numbers in the buffer, attempting to decode the start of the
program (also from the buffer), and/or checking the file extension. If the handler does support the
format, it prepares the program for execution and returns a success code. Otherwise, it quits early

.and returns an error code

The kernel tries the 1oad_binary() function of each binfmt until it reaches one that succeeds.
Sometimes these will run recursively; for example, if a script has an interpreter specified and that
interpreter is, itself, a script, the hierarchy might be binfmt_script > binfmt_script > binfmt_elf (where

.ELF is the executable format at the end of the chain)

Format Highlight: Scripts

.Of the many formats Linux supports, binfmt_script is the first | want to specifically talk about


https://lwn.net/Articles/507794/
https://wiki.archlinux.org/title/Kernel_module
https://en.wikipedia.org/wiki/Magic_number_(programming)

Have you ever read or written a shebang? That line at the start of some scripts that specifies the

?path to the interpreter

#!/bin/bash

| always just assumed these were handled by the shell, but no! Shebangs are actually a feature of
the kernel, and scripts are executed with the same syscalls as every other program. Computers are

.so cool

:Take a look at how fs/binfmt_script.c checks if a file starts with a shebang

load_script @ fs/binfmt_script.c

/* Not ours to exec if we don't start with "#!". */
if ((bprm->buf[@] !'= "#') || (bprm->buf[1] != "!I"))
return -ENOEXEC;

If the file does start with a shebang, the binfmt handler then reads the interpreter path and any
space-separated arguments after the path. It stops when it hits either a newline or the end of the
.buffer

.There are two interesting, wonky things going on here

First of all, remember that buffer in 1inux_binprm that was filled with the first 256 bytes of the file?
That’s used for executable format detection, but that same buffer is also what shebangs are read

.out of in binfmt_script

During my research, | read an article that described the buffer as 128 bytes long. At some point after
that article was published, the length was doubled to 256 bytes! Curious why, | checked the Git
blame — a log of everybody who edited a certain line of code — for the line where BINPRM_BUF_SIZE is

..defined in the Linux source code. Lo and behold


https://en.wikipedia.org/wiki/Shebang_(Unix)
https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/fs/binfmt_script.c#L40-L42

. Oleg Nesterov, 4 years ago (March 7th, 2019 7:29 PM)

exec: increase BINPRM_BUF_SIZE to 256

Large enterprise clients often run applications out of networked file
systems where the IT mandated layout of project volumes can end up
leading to paths that are longer than 128 characters. Bumping this up
to the next order of two solves this problem in all but the most
egregious case while still fitting into a 512b slab.

[oleg@redhat.com: update comment, per Kees]

Link: http://lkml.kernel.org/r/20181112160956.GA28472@redhat.com
Signed-off-by: Oleg Nesterov <oleg@redhat.com>

Reported-by: Ben Woodard <woodard@redhat.com>

Reviewed-by: Andrew Morton <akpm@®@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>

Acked-by: Kees Cook <keescook@chromium.org>

Cc: "Eric W. Biederman" <ebiederm@xmission.com>

Signed-off-by: Andrew Morton <akpm@Ilinux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>

6 6eb3c3d <ty «O |

+ f#fdefine BINPRM_BUF_SIZE 256

Changes ¢ 26e1522 — ¢ 6eb3c3d | )

ICOMPUTERS ARE SO COOL

Since shebangs are handled by the kernel, and pull from buf instead of loading the whole file, they're
always truncated to the length of buf. Apparently, 4 years ago, someone got annoyed by the kernel
truncating their >128-character paths, and their solution was to double the truncation point by
doubling the buffer size! Today, on your very own Linux machine, if you have a shebang line more

.than 256 characters long, everything past 256 characters will be completely lost



file.bin

Loaded into buf (43 o5 ch 04 97 e4 34 23 34 09 c7 a2 7f 35 a8 89\
(first 256 bytes) |12 Qe fb 79 fe ce 83 64 d1 3 b4 a2 fb el 26 Oc

d8 88 bd 1e 6d c® 9e 38 3a 8c c7 06 59 10 99 c7
20 ¢c8 70 fd d7 09 1b 5a a4 8a 0b c9 74 74 11 30
18 6f c2 56 bf eb 92 51 41 dd 88 76 08 45 51 b3
df 99 f1 ab 40 cf 50 c4 86 65 b8 4a dO a2 34 f4
99 85 29 06 c9 6e c2 e9 3e 65 ff 28 bl 65 31 39
11 1a 8d c1 89 cd 17 8b 68 16 ed 47 21 5f c9 68
4e 6b 66 cbh 07 02 ed 59 22 32 53 55 6e d6 3e 37
Oc 59 15 55 e9 40 47 e5 Ob 36 52 0d O0f 13 dO 4d
cc f0 4c fa 5c 8f 4a 2e 7f bd b5 ed 22 9a ce 6¢C
40 46 30 8e bc 6e cb f£d 27 3a 17 ac 1c 41 £3 66
02 4c 2f edD 00 7f 5a le f4 ed4 13 23 05 8c 39 f1
a0 do 48 68 27 c6 8b 96 9d 8b 54 f8 5f 63 75 29
ef 39 54 16 72 6e fe 9e b3 a6 27 4d ef 3c 46 54
e2 27 85 3a bb 65 45 cd 63 89 b5 a4 a9 ba 07 ea

7

Ignored
(past 256 bytes)

Imagine having a bug because of this. Imagine trying to figure out the root cause of what'’s breaking
your code. Imagine how it would feel, discovering that the problem is deep within the Linux kernel.
Woe to the next IT person at a massive enterprise who discovers that part of a path has

.mysteriously gone missing

The second wonky thing: remember how it's only convention for argvle] to be the program name,

?how the caller can pass any argv they want to an exec syscall and it will pass through unmoderated

It just so happens that binfmt_script is one of those places that assumes argv[0] is the program

:name. It always removes argv[0], and then adds the following to the start of argv

Path to the interpreter o
Arguments to the interpreter

Filename of the script o



Example: Argument Modification

:Let’s look at a sample execve call

// Arguments: filename, argv, envp
execve("./script", [ "A", "B", "C" 1, [D;

:This hypothetical script file has the following shebang as its first line

script

#!/usr/bin/node --experimental-module

:The modified argv finally passed to the Node interpreter will be

[ "/usr/bin/node", "--experimental-module", "./script", "B", "C" ]

After updating argv, the handler finishes preparing the file for execution by setting
linux_binprm.interp to the interpreter path (in this case, the Node binary). Finally, it returns 0 to

.indicate success preparing the program for execution

Format Highlight: Miscellaneous Interpreters

Another interesting handler is binfmt_misc. It opens up the ability to add some limited formats
through userland configuration, by mounting a special file system at /proc/sys/fs/binfmt_misc/.

Programs can perform specially formatted writes to files in this directory to add their own handlers.

:Each configuration entry specifies

How to detect their file format. This can specify either a magic number at a certain offsetora e
file extension to look for

The path to an interpreter executable. There’'s no way to specify interpreter arguments, soa *
.wrapper script is needed if those are desired

.Some configuration flags, including one specifying how binfmt_misc updates argv ®


https://docs.kernel.org/admin-guide/binfmt-misc.html

This binfmt_misc system is often used by Java installations, configured to detect class files by their
0xCAFEBABE magic bytes and JAR files by their extension. On my particular system, a handler is
configured that detects Python bytecode by its .pyc extension and passes it to the appropriate

.handler

This is a pretty cool way to let program installers add support for their own formats without needing

.to write highly privileged kernel code

In the End (Not the Linkin Park Song)

:An exec syscall will always end up in one of two paths

It will eventually reach an executable binary format that it understands, perhaps after several o
.layers of script interpreters, and run that code. At this point, the old code has been replaced
or it will exhaust all its options and return an error code to the calling program, tail between ... *

.its legs

If you've ever used a Unix-like system, you might've noticed that shell scripts run from a terminal
still execute if they don't have a shebang line or .sh extension. You can test this out right now if you

:have a non-Windows terminal handy

Shell session

$ echo "echo hello" > ./file
$ chmod +x ./file

$ ./file

hello

(.chmod +x tells the OS that a file is an executable. You won't be able to run it otherwise)

So, why does the shell script run as a shell script? The kernel's format handlers should have no clear

lway of detecting shell scripts without any discernible label

Well, it turns out that this behavior isn’t part of the kernel. It's actually a common way for your shell

.to handle a failure case



When you execute a file using a shell and the exec syscall fails, most shells will retry executing the

file as a shell script by executing a shell with the filename as the first argument. Bash will typically

.use itself as this interpreter, while ZSH uses whatever sh is, usually Bourne shell

This behavior is so common because it's specified in POS/X, an old standard designed to make

code portable between Unix systems. While POSIX isn't strictly followed by most tools or operating

.systems, many of its conventions are still shared

If [an exec syscall] fails due to an error equivalent to the [ENOEXEC] error, the shell shall execute
a command equivalent to having a shell invoked with the command name as its first operand,
with any remaining arguments passed to the new shell. If the executable file is not a text file,

the shell may bypass this command execution. In this case, it shall write an error message and

.shall return an exit status of 126

Source: Shell Command Language, POSIX.1-2017

IComputers are so cool


https://en.wikipedia.org/wiki/Bourne_shell
https://en.wikipedia.org/wiki/POSIX
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/utilities/V3_chap02.html#tag_18_09_01_01

Becoming an Elf-Lord :4 (J.as

We pretty thoroughly understand execve now. At the end of most paths, the kernel will reach a final
program containing machine code for it to launch. Typically, a setup process is required before
actually jumping to the code — for example, different parts of the program have to be loaded into
the right places in memory. Each program needs different amounts of memory for different things,
so we have standard file formats that specify how to set up a program for execution. While Linux
supports many such formats, the most common format by far is ELF (executable and linkable

.format)

YOV'VE HERRD OF
ELF oV A SHELF

| NOW, GET READY Fog,

GNU/LINUX

- NiCKy

(.Thank you to Nicky Case for the adorable drawing)


https://ncase.me/

?Aside: are elves everywhere

When you run an app or command-line program on Linu, it's exceedingly likely that it's an ELF
binary. However, on macOS the de-facto format is Mach-0 instead. Mach-0 does all the same

things as ELF but is structured differently. On Windows, .exe files use the Portable Executable

.format which is, again, a different format with the same concept

In the Linux kernel, ELF binaries are handled by the binfmt_elf handler, which is more complex than
many other handlers and contains thousands of lines of code. It's responsible for parsing out

.certain details from the ELF file and using them to load the process into memory and execute it

:I ran some command-line kung fu to sort binfmt handlers by line count

Shell session

$ wc -1 binfmt_x | sort -nr | sed 1d
2181 binfmt_elf.c
1658 binfmt_elf_fdpic.c
944 binfmt_flat.c
836 binfmt_misc.c
158 binfmt_script.c
64 binfmt_elf_test.c

File Structure

Before looking more deeply at how binfmt_elf executes ELF files, let's take a look at the file format

;itself. ELF files are typically made up of four parts


https://en.wikipedia.org/wiki/Mach-O
https://en.wikipedia.org/wiki/Portable_Executable

Structure of an ELF File

ELF Header

Program Header Table (PHT)

Section Header Table (SHT)

Data

ELF Header

Every ELF file has an ELF header. It has the very important job of conveying basic information about

:the binary such as

What processor it's designed to run on. ELF files can contain machine code for different
.processor types, like ARM and x86

Whether the binary is meant to be run on its own as an executable, or whether it's meant to be e
loaded by other programs as a “dynamically linked library.” We'll go into details about what
.dynamic linking is soon

The entry point of the executable. Later sections specify exactly where to load data contained e
in the ELF file into memory. The entry point is a memory address pointing to where the first

.machine code instruction is in memory after the entire process has been loaded

The ELF header is always at the start of the file. It specifies the locations of the program header
table and section header, which can be anywhere within the file. Those tables, in turn, point to data

.stored elsewhere in the file


https://refspecs.linuxfoundation.org/elf/gabi4+/ch4.eheader.html

Program Header Table

The program header table is a series of entries containing specific details for how to load and

execute the binary at runtime. Each entry has a type field that says what detail it's specifying — for
example, PT_LOAD means it contains data that should be loaded into memory, but PT_NOTE means the

.segment contains informational text that shouldn’t necessarily be loaded anywhere

Common Program Header Types

PT_LOAD
PT_NOTE
PT_DYNAMIC
PT_INTERP

Each entry specifies information about where its data is in the file and, sometimes, how to load the

:data into memory

It points to the position of its data within the ELF file e

It can specify what virtual memory address the data should be loaded into memory at. Thisis *
.typically left blank if the segment isn't meant to be loaded into memory

Two fields specify the length of the data: one for the length of the data in the file, and one for e
the length of the memory region to be created. If the memory region length is longer than the
length in the file, the extra memory will be filled with zeroes. This is beneficial for programs
that might want a static segment of memory to use at runtime; these empty segments of
.memory are typically called BSS segments

Finally, a flags field specifies what operations should be permitted if it's loaded into memory:
PF_R makes it readable, PF_w makes it writable, and PF_x means it's code that should be

.allowed to execute on the CPU

Section Header Table

The section header table is a series of entries containing information about sections. This section

information is like a map, charting the data inside the ELF file. It makes it easy for programs like


https://refspecs.linuxbase.org/elf/gabi4+/ch5.pheader.html
https://en.wikipedia.org/wiki/.bss
https://refspecs.linuxbase.org/elf/gabi4+/ch4.sheader.html
https://www.sourceware.org/gdb/

.debuggers to understand the intended uses of different portions of the data

The section header table is like a map for binary data.

For example, the program header table can specify a large swath of data to be loaded into memory
together. That single PT_L0AD block might contain both code and global variables! There’s no reason
those have to be specified separately to run the program; the CPU just starts at the entry point and
steps forward, accessing data when and where the program requests it. However, software like a
debugger for analyzing the program needs to know exactly where each area starts and ends,
otherwise it might try to decode some text that says “hello” as code (and since that isn’t valid code,

.explode). This information is stored in the section header table

While it's usually included, the section header table is actually optional. ELF files can run perfectly
well with the section header table completely removed, and developers who want to hide what their
code does will sometimes intentionally strip or mangle the section header table from their ELF

.binaries to make them harder to decode

Each section has a name, a type, and some flags that specify how it’s intended to be used and

:decoded. Standard names usually start with a dot by convention. The most common sections are


https://www.sourceware.org/gdb/
https://binaryresearch.github.io/2019/09/17/Analyzing-ELF-Binaries-with-Malformed-Headers-Part-1-Emulating-Tiny-Programs.html

text: machine code to be loaded into memory and executed on the CPU. SHT_PROGBITS type. ®
with the sHF_EXECINSTR flag to mark it as executable, and the sHF_ALLoc flag which means it's
loaded into memory for execution. (Don’t get confused by the name, it’s still just binary
machine code! | always found it somewhat strange that it’s called . text despite not being
readable “text.”)

data: initialized data hardcoded in the executable to be loaded into memory. For example, a. *
global variable containing some text might be in this section. If you write low-level code, this
is the section where statics go. This also has the type sHT_PrROGBITS, which just means the
section contains “information for the program.” Its flags are SHF_ALLOC and SHF_WRITE to mark it
.as writable memory

bss: | mentioned earlier that it's common to have some allocated memory that starts out. e
zeroed. It would be a waste to include a bunch of empty bytes in the ELF file, so a special
segment type called BSS is used. It's helpful to know about BSS segments during debugging,
so there’s also a section header table entry that specifies the length of the memory to be
.allocated. It's of type sHT_N0BITS, and is flagged sHF_ALLOC and SHF_WRITE

rodata: this is like .data except it's read-only. In a very basic C program that runs. e
printf("Hello, world!"), the string “Hello world!” would be in a . rodata section, while the
.actual printing code would be in a . text section

shstrtab: this is a fun implementation detail! The names of sections themselves (like .text.
and .shstrtab) aren’t included directly in the section header table. Instead, each entry contains
an offset to a location in the ELF file that contains its name. This way, each entry in the
section header table can be the same size, making them easier to parse — an offset to the
name is a fixed-size number, whereas including the name in the table would use a variable-
size string. All of this name data is stored in its own section called .shstrtab, of type

.SHT_STRTAB

Data

The program and section header table entries all point to blocks of data within the ELF file, whether
to load them into memory, to specify where program code is, or just to name sections. All of these

.different pieces of data are contained in the data section of the ELF file



Program Header Entry Program Header Entry Section Header Entry
Type: PT_INTERP Type: PT_LOAD Name:
Data: Data: Data:

J

Data Section
/1ib64/1d-1inux-x86-64.s0.2Hello, world!

A Brief Explanation of Linking
.Back to the binfmt_elf code: the kernel cares about two types of entries in the program header table

PT_LOAD segments specify where all the program data, like the .text and .data sections, need to be
loaded into memory. The kernel reads these entries from the ELF file to load the data into memory

.so the program can be executed by the CPU

The other type of program header table entry that the kernel cares about is PT_INTERP, which

”.specifies a “dynamic linking runtime

Before we talk about what dynamic linking is, let’s talk about “linking” in general. Programmers tend
to build their programs on top of libraries of reusable code — for example, libc, which we talked
about earlier. When turning your source code into an executable binary, a program called a linker
resolves all these references by finding the library code and copying it into the binary. This process

.is called static linking, which means external code is included directly in the file that's distributed

However, some libraries are super common. You'll find libc is used by basically every program under
the sun, since it's the canonical interface for interacting with the OS through syscalls. It would be a
terrible use of space to include a separate copy of libc in every single program on your computer.
Also, it might be nice if bugs in libraries could be fixed in one place rather than having to wait for

.each program that uses the library to be updated. Dynamic linking is the solution to these problems

If a statically linked program needs a function foo from a library called bar, the program would
include a copy of the entirety of foo. However, if it's dynamically linked it would only include a

reference saying “I need foo from library bar.” When the program is run, bar is hopefully installed on



the computer and the foo function’s machine code can be loaded into memory on-demand. If the
computer’s installation of the bar library is updated, the new code will be loaded the next time the

.program runs without needing any change in the program itself

Static Linking Dynamic Linking
Library functions are copied from the developer’s computer
into each binary at build time.

Binaries reference the names of library functions, which are
loaded from the user’s computer at runtime.

Dynamic Linking in the Wild

On Linux, dynamically linkable libraries like bar are typically packaged into files with the .so (Shared
Object) extension. These .so files are ELF files just like programs — you may recall that the ELF
header includes a field to specify whether the file is an executable or a library. In addition, shared

objects have a .dynsym section in the section header table which contains information on what

.symbols are exported from the file and can be dynamically linked to

On Windows, libraries like bar are packaged into .dll (dynamic link library) files. macOS uses the
.dylib (dynamically linked library) extension. Just like macOS apps and Windows .exe files, these are

.formatted slightly differently from ELF files but are the same concept and technique

An interesting distinction between the two types of linking is that with static linking, only the
portions of the library that are used are included in the executable and thus loaded into memory.
With dynamic linking, the entire library is loaded into memory. This might initially sound less
efficient, but it actually allows modern operating systems to save more space by loading a library

into memory once and then sharing that code between processes. Only code can be shared as the



library needs different state for different programs, but the savings can still be on the order of tens
.to hundreds of megabytes of RAM

Execution

Let's hop on back to the kernel running ELF files: if the binary it's executing is dynamically linked, the
0S can't just jump to the binary’s code right away because there would be missing code —

Iremember, dynamically linked programs only have references to the library functions they need

To run the binary, the OS needs to figure out what libraries are needed, load them, replace all the
named pointers with actual jump instructions, and then start the actual program code. This is very
complex code that interacts deeply with the ELF format, so it's usually a standalone program rather
than part of the kernel. ELF files specify the path to the program they want to use (typically

.something like /1ib64/1d-1inux-x86-64.s0.2) in @ PT_INTERP entry in the program header table

After reading the ELF header and scanning through the program header table, the kernel can set up
the memory structure for the new program. It starts by loading all PT_L0AD segments into memory,
populating the program'’s static data, BSS space, and machine code. If the program is dynamically

linked, the kernel will have to execute the ELF interpreter (PT_INTERP), so it also loads the interpreter’s

.data, BSS, and code into memory

Now the kernel needs to set the instruction pointer for the CPU to restore when returning to
userland. If the executable is dynamically linked, the kernel sets the instruction pointer to the start

.of the ELF interpreter’'s code in memory. Otherwise, the kernel sets it to the start of the executable

The kernel is almost ready to return from the syscall (remember, we're still in execve). It pushes the

.argc, argy, and environment variables to the stack for the program to read when it begins

The registers are now cleared. Before handling a syscall, the kernel stores the current value of
registers to the stack to be restored when switching back to user space. Before returning to user

.space, the kernel zeroes this part of the stack

Finally, the syscall is over and the kernel returns to userland. It restores the registers, which are now
zeroed, and jumps to the stored instruction pointer. That instruction pointer is now the starting point

lof the new program (or the ELF interpreter) and the current process has been replaced


https://unix.stackexchange.com/questions/400621/what-is-lib64-ld-linux-x86-64-so-2-and-why-can-it-be-used-to-execute-file

The Translator in Your Computer :5 (Jad

Up until now, every time I've talked about reading and writing memory was a little wishy-washy. For
example, ELF files specify specific memory addresses to load data into, so why aren't there
problems with different processes trying to use conflicting memory? Why does each process seem

?to have a different memory environment

Also, how exactly did we get here? We understand that execve is a syscall that replaces the current
process with a new program, but this doesn’t explain how multiple processes can be started. It
definitely doesn’t explain how the very first program runs — what chicken (process) lays (spawns) all

?the other eggs (other processes)

We're nearing the end of our journey. After these two questions are answered, we'll have a mostly
complete understanding of how your computer got from bootup to running the software you're

.using right now

Memory is Fake

So... about memory. It turns out that when the CPU reads from or writes to a memory address, it's
not actually referring to that location in physical memory (RAM). Rather, it's pointing to a location in

.virtual memory space

The CPU talks to a chip called a memory management unit (MMU). The MMU works like a translator

with a dictionary that translates locations in virtual memory to locations in RAM. When the CPU is
given an instruction to read from memory address oxfffaf54834067fe2, it asks the MMU to translate
that address. The MMU looks it up in the dictionary, discovers that the matching physical address is
0x53a4b64290179fe2, and sends the number back to the CPU. The CPU can then read from that
.address in RAM


https://en.wikipedia.org/wiki/Memory_management_unit
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When the computer first boots up, memory accesses go directly to physical RAM. Immediately after

.startup, the OS creates the translation dictionary and tells the CPU to start using the MMU

This dictionary is actually called a page table, and this system of translating every memory access
is called paging. Entries in the page table are called pages and each one represents how a certain
chunk of virtual memory maps to RAM. These chunks are always a fixed size, and each processor

architecture has a different page size. x86-64 has a default 4 KiB page size, meaning each page

.specifies the mapping for a block of memory 4,096 bytes long

In other words, with 4 KiB pages the bottom 12 bits of an address will always be the same before
and after MMU translation — 12, because that’'s the amount of bits needed to index the 4,096-byte

.page you get post-translation

x86-64 also allows operating systems to enable larger 2 MiB or 4 GiB pages, which can improve
address translation speed but increase memory fragmentation and waste. The larger the page size,

.the smaller the portion of the address that’s translated by the MMU

Address Breakdown — 4 KiB Paging

lfffaf54834067“fe21

Translated by MMU Lowest 12 Bits
Becomes page’s start address  Indexes the page




The page table itself just resides in RAM. While it can contain millions of entries, each entry’s size is

.only on the order of a couple bytes, so the page table doesn’t take up too much space

To enable paging at boot, the kernel first constructs the page table in RAM. Then, it stores the
physical address of the start of the page table in a register called the page table base register
(PTBR). Finally, the kernel enables paging to translate all memory accesses with the MMU. On x86-
64, the top 20 bits of control register 3 (CR3) function as the PTBR. Bit 31 of CRO0, designated PG for

.Paging, is set to 1 to enable paging

The magic of the paging system is that the page table can be edited while the computer is running.
This is how each process can have its own isolated memory space — when the OS switches context
from one process to another, an important task is remapping the virtual memory space to a
different area in physical memory. Let's say you have two processes: process A can have its code
and data (likely loaded from an ELF file!) at 0x0000000000400000, and process B can access its code
and data from the very same address. Those two processes can even be instances of the same
program, because they aren't actually fighting over that address range! The data for process A is
somewhere far from process B in physical memory, and is mapped to 0x0000000000400000 by the

.kernel when switching to the process

Process Process
“Read address 0x0000000000400000” “Read address 0x0000000000400000”

010000001001010161111111600111111111610111110110160111600011611610101
Physical Memory (RAM)



Aside: cursed ELF fact

In certain situations, binfmt_elf has to map the first page of memory to zeroes. Some programs
written for UNIX System V Release 4.0 (SVr4), an OS from 1988 that was the first to support
ELF, rely on null pointers being readable. And somehow, some programs still rely on that

.behavior

:It seems like the Linux kernel dev implementing this was a little disgruntled

Why this, you ask??? Well SVr4 maps page 0 as read-only, and some applications depend™
upon this behavior. Since we do not have the power to recompile these, we emulate the SVr4

“.behavior. Sigh

.Sigh

Security with Paging

The process isolation enabled by memory paging improves code ergonomics (processes don't need
to be aware of other processes to use memory), but it also creates a level of security: processes
cannot access memory from other processes. This half answers one of the original questions from

:the start of this article

If programs run directly on the CPU, and the CPU can directly access RAM, why can’t code

?access memory from other processes, or, god forbid, the kernel

..Remember that? It feels like so long ago

What about that kernel memory, though? First things first: the kernel obviously needs to store plenty
of data of its own to keep track of all the processes running and even the page table itself. Every
time a hardware interrupt, software interrupt, or system call is triggered and the CPU enters kernel

.mode, the kernel code needs to access that memory somehow

Linux’s solution is to always allocate the top half of the virtual memory space to the kernel, so Linux

is called a higher half kernel. Windows employs a similar technique, while macOS is... slightly more

~(++)~ .complicated and caused my brain to ooze out of my ears reading about it


https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/fs/binfmt_elf.c#L1322-L1329
https://wiki.osdev.org/Higher_Half_Kernel
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/overview-of-windows-memory-space
https://www.researchgate.net/figure/Overview-of-the-Mac-OS-X-virtual-memory-system-which-resides-inside-the-Mach-portion-of_fig1_264086271
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/ManagingMemory/Articles/AboutMemory.html
https://developer.apple.com/library/archive/documentation/Darwin/Conceptual/KernelProgramming/vm/vm.html

User Space - Memory for the executing program Kernel Space - Fixed area for everything kernel-related

Ox0000000000000000 Ox8000000000000000 OXFFFFFFFFFFFFFFFF

It would be terrible for security if userland processes could read or write kernel memory though, so
paging enables a second layer of security: each page must specify permission flags. One flag
determines whether the region is writable or only readable. Another flag tells the CPU that only
kernel mode is allowed to access the region’s memory. This latter flag is used to protect the entire
higher half kernel space — the entire kernel memory space is actually available in the virtual memory

.mapping for user space programs, they just don’t have the permissions to access it

Page Table Entry

Present: true
Read/write: read only
User/kernel: all modes
Dirty: false

Accessed: true

The page table itself is actually contained within the kernel memory space! When the timer chip
triggers a hardware interrupt for process switching, the CPU switches the privilege level to kernel
mode and jumps to Linux kernel code. Being in kernel mode (Intel ring 0) allows the CPU to access
the kernel-protected memory region. The kernel can then write to the page table (residing
somewhere in that upper half of memory) to remap the lower half of virtual memory for the new
process. When the kernel switches to the new process and the CPU enters user mode, it can no

.longer access any of the kernel memory

Just about every memory access goes through the MMU. Interrupt descriptor table handler

.pointers? Those address the kernel’s virtual memory space as well



Hierarchical Paging and Other Optimizations

bit systems have memory addresses that are 64 bits long, meaning the 64-bit virtual memory-64
space is a whopping 16 exbibytes in size. That is incredibly large, far larger than any computer that

exists today or will exist any time soon. As far as | can tell, the most RAM in any computer ever was

in the Blue Waters supercomputer, with over 1.5 petabytes of RAM. That's still less than 0.01% of 16
.EiB

If an entry in the page table was required for every 4 KiB section of virtual memory space, you would
need 4,503,599,627,370,496 page table entries. With 8-byte-long page table entries, you would need
32 pebibytes of RAM just to store the page table alone. You may notice that'’s still larger than the

.world record for the most RAM in a computer

?Aside: why the weird units

| know it's uncommon and really ugly, but | find it important to clearly differentiate between
binary byte size units (powers of 2) and metric ones (powers of 10). A kilobyte, kB, is an Sl unit
that means 1,000 bytes. A kibibyte, KiB, is an IEC-recommended unit that means 1,024 bytes.
In terms of CPUs and memory addresses, byte counts are usually powers of two because
computers are binary systems. Using KB (or worse, kB) to mean 1,024 would be more

.ambiguous

Since it would be impossible (or at least incredibly impractical) to have sequential page table entries
for the entire possible virtual memory space, CPU architectures implement hierarchical paging. In
hierarchical paging systems, there are multiple levels of page tables of increasingly small
granularity. The top level entries cover large blocks of memory and point to page tables of smaller
blocks, creating a tree structure. The individual entries for blocks of 4 KiB or whatever the page size

.is are the leaves of the tree

x86-64 historically uses 4-level hierarchical paging. In this system, each page table entry is found
by offsetting the start of the containing table by a portion of the address. This portion starts with
the most significant bits, which work as a prefix so the entry covers all addresses starting with
those bits. The entry points to the start of the next level of table containing the subtrees for that

.block of memory, which are again indexed with the next collection of bits


https://en.wiktionary.org/wiki/exbibyte
https://en.wikipedia.org/wiki/Blue_Waters

The designers of x86-64's 4-level paging also chose to ignore the top 16 bits of all virtual pointers
to save page table space. 48 bits gets you a 128 TiB virtual address space, which was deemed to be

large enough. (The full 64 bits would get you 16 EiB, which is kind of a lot.)

Since the first 16 bits are skipped, the “most significant bits” for indexing the first level of the page
table actually start at bit 47 rather than 63. This also means the higher half kernel diagram from
earlier in this chapter was technically inaccurate; the kernel space start address should’ve been

.depicted as the midpoint of an address space smaller than 64 bits

N
x86-64 Paging (4-Level)
Level 4 Level 3 Level 2 Level 1
(one single top level table) (many different [n?] level 3 tables) (many different [n] level 2 tables) (many different [n“] level 1 tables)
Page Table Base Address L3 Table Start Address L2 Table Start Address L1 Table Start Address
The PTE points to the start of the 4 KiB
PTE - RAM addr block in RAM. The MMU adds bits 0-11
to that address to get the final physical

address.
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Addrof an L2 table
Addr of an L3 table (12 bits = 4,096 values = 4 KiB)
Addrof an L1 table
All addresses Addresses starting with Addresses starting with Addresses starting with Addresses starting with
XXXXXXXXX XXXXXXX
XX XXXXXXXXX XXXXX

XXXX000000000000

Hierarchical paging solves the space problem because at any level of the tree, the pointer to the
next entry can be null (exe). This allows entire subtrees of the page table to be elided, meaning
unmapped areas of the virtual memory space don'’t take up any space in RAM. Lookups at
unmapped memory addresses can fail quickly because the CPU can error as soon as it sees an
empty entry higher up in the tree. Page table entries also have a presence flag that can be used to

.mark them as unusable even if the address appears valid

Another benefit of hierarchical paging is the ability to efficiently switch out large sections of the
virtual memory space. A large swath of virtual memory might be mapped to one area of physical
memory for one process, and a different area for another process. The kernel can store both
mappings in memory and simply update the pointers at the top level of the tree when switching
processes. If the entire memory space mapping was stored as a flat array of entries, the kernel
would have to update a lot of entries, which would be slow and still require independently keeping

.track of the memory mappings for each process



| said x86-64 “historically” uses 4-level paging because recent processors implement 5-level
paging. 5-level paging adds another level of indirection as well as 9 more addressing bits to expand
the address space to 128 PiB with 57-bit addresses. 5-level paging is supported by operating

.systems including Linux since 2017 as well as recent Windows 10 and 11 server versions

Aside: physical address space limits

Just as operating systems don’t use all 64 bits for virtual addresses, processors don't use
entire 64-bit physical addresses. When 4-level paging was the standard, x86-64 CPUs didn't
use more than 46 bits, meaning the physical address space was limited to only 64 TiB. With 5-

level paging, support has been extended to 52 bits, supporting a 4 PiB physical address space

On the OS level, it's advantageous for the virtual address space to be larger than the physical
address space. As Linus Torvalds said, “[i]t needs to be bigger, by a factor of at least two, and
that’s quite frankly pushing it, and you're much better off having a factor of ten or more.

".Anybody who doesn't get that is a moron. End of discussion

Swapping and Demand Paging

A memory access might fail for a couple reasons: the address might be out of range, it might not be
mapped by the page table, or it might have an entry that’s marked as not present. In any of these
cases, the MMU will trigger a hardware interrupt called a page fault to let the kernel handle the

.problem

In some cases, the read was truly invalid or prohibited. In these cases, the kernel will probably

.terminate the program with a segmentation fault error

Shell session

$ ./program
Segmentation fault (core dumped)
$


https://en.wikipedia.org/wiki/Intel_5-level_paging
https://lwn.net/Articles/717293/
https://www.realworldtech.com/forum/?threadid=76912&curpostid=76973
https://en.wikipedia.org/wiki/Segmentation_fault

Aside: segfault ontology

Segmentation fault” means different things in different contexts. The MMU triggers a“
hardware interrupt called a “segmentation fault” when memory is read without permission, but
“segmentation fault” is also the name of a signal the OS can send to running programs to

.terminate them due to any illegal memory access

In other cases, memory accesses can intentionally fail, allowing the OS to populate the memory and
then hand control back to the CPU to try again. For example, the OS can map a file on disk to virtual
memory without actually loading it into RAM, and then load it into physical memory when the

.address is requested and a page fault occurs. This is called demand paging
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For one, this allows syscalls like mmap that lazily map entire files from disk to virtual memory to

exist. If you're familiar with LLaMa.cpp, a runtime for a leaked Facebook language model, Justine

Tunney recently significantly optimized it by making_all the loading logic use mmap. (If you haven't

heard of her before, check her stuff out! Cosmopolitan Libc and APE are really cool and might be

interesting if you've been enjoying this article.)

Apparently there's a |ot of drama about Justine's involvement in this change. Just pointing this

out so | don't get screamed at by random internet users. | must confess that | haven’t read

.most of the drama, and everything | said about Justine’s stuff being cool is still very true

When you execute a program and its libraries, the kernel doesn’t actually load anything into memory.

It only creates an mmap of the file — when the CPU tries to execute the code, the page immediately


https://man7.org/linux/man-pages/man2/mmap.2.html
https://justine.lol/mmap/
https://justine.lol/
https://rentry.org/Jarted
https://news.ycombinator.com/item?id=35413289
https://news.ycombinator.com/item?id=35458004

.faults and the kernel replaces the page with a real block of memory

Demand paging also enables the technique that you've probably seen under the name “swapping” or
“paging.” Operating systems can free up physical memory by writing memory pages to disk and then
removing them from physical memory but keeping them in virtual memory with the present flag set
to 0. If that virtual memory is read, the OS can then restore the memory from disk to RAM and set
the present flag back to 1. The OS may have to swap a different section of RAM to make space for
the memory being loaded from disk. Disk reads and writes are slow, so operating systems try to

.make swapping happen as little as possible with efficient page replacement algorithms

An interesting hack is to use page table physical memory pointers to store the locations of files
within physical storage. Since the MMU will page fault as soon as it sees a negative present flag, it
doesn’t matter that they are invalid memory addresses. This isn't practical in all cases, but it's

.amusing to think about


https://en.wikipedia.org/wiki/Page_replacement_algorithm

Let's Talk About Forks and Cows :6 (J.a$

?The final question: how did we get here? Where do the first processes come from

This article is almost done. We're on the final stretch. About to hit a home run. Moving on to greener
pastures. And various other terrible idioms that mean you are a single Length of Chapter 6 away
from touching grass or whatever you do with your time when you aren’t reading 15,000 word articles

.about CPU architecture

If execve starts a new program by replacing the current process, how do you start a new program
separately, in a new process? This is a pretty important ability if you want to do multiple things on
your computer; when you double-click an app to start it, the app opens separately while the program

.you were previously on continues running

The answer is another system call: fork, the system call fundamental to all multiprocessing. fork is
quite simple, actually — it clones the current process and its memory, leaving the saved instruction
pointer exactly where it is, and then allows both processes to proceed as usual. Without
intervention, the programs continue to run independently from each other and all computation is
.doubled

The newly running process is referred to as the “child,” with the process originally calling fork the
“parent.” Processes can call fork multiple times, thus having multiple children. Each child is

.numbered with a process ID (PID), starting with 1

Cluelessly doubling the same code is pretty useless, so fork returns a different value on the parent
vs the child. On the parent, it returns the PID of the new child process, while on the child it returns 0.

.This makes it possible to do different work on the new process so that forking is actually helpful



main.c

pid_t pid = fork();

// Code continues from this point as usual, but now across
// two "identical" processes.

//

// Identical... except for the PID returned from fork!

/7

// This is the only indicator to either program that they
// are not one of a kind.

if (pid == @) {

// We're in the child.

// Do some computation and feed results to the parent!
} else {

// We're in the parent.

// Probably continue whatever we were doing before.

Process forking can be a bit hard to wrap your head around. From this point on | will assume you've

figured it out; if you have not, check out this hideous-looking website for a pretty good explainer

Anyways, Unix programs launch new programs by calling fork and then immediately running execve
in the child process. This is called the fork-exec pattern. When you run a program, your computer

:executes code similar to the following

launcher.c

pid_t pid = fork();

if (pid == 0) {
// Immediately replace the child process with the new program.

execve(...);

// Since we got here, the process didn't get replaced. We're in the parent!
// Helpfully, we also now have the PID of the new child process in the PID
// variable, if we ever need to kill it.

// Parent program continues here. ..


https://www.csl.mtu.edu/cs4411.ck/www/NOTES/process/fork/create.html

IMooooo

You might've noticed that duplicating a process’s memory only to immediately discard all of it when
loading a different program sounds a bit inefficient. Luckily, we have an MMU. Duplicating data in
physical memory is the slow part, not duplicating page tables, so we simply don’t duplicate any
RAM: we create a copy of the old process’s page table for the new process and keep the mapping

.pointing to the same underlying physical memory

But the child process is supposed to be independent and isolated from the parent! It's not okay for

Ithe child to write to the parent’'s memory, or vice versa

Introducing COW (copy on write) pages. With COW pages, both processes read from the same
physical addresses as long as they don't attempt to write to the memory. As soon as one of them
tries to write to memory, that page is copied in RAM. COW pages allow both processes to have
memory isolation without an upfront cost of cloning the entire memory space. This is why the fork-
exec pattern is efficient; since none of the old process’s memory is written to before loading a new

.binary, no memory copying is necessary

COW is implemented, like many fun things, with paging hacks and hardware interrupt handling. After
fork clones the parent, it flags all of the pages of both processes as read-only. When a program
writes to memory, the write fails because the memory is read-only. This triggers a segfault (the

hardware interrupt kind) which is handled by the kernel. The kernel which duplicates the memory,

.updates the page to allow writing, and returns from the interrupt to reattempt the write

!A: Knock, knock

?B: Who's there

.A: Interrupting cow

— B: Interrupting cow wh
!A: MOOOOO

In the Beginning (Not Genesis 1:1)

Every process on your computer was fork-execed by a parent program, except for one: the init

process. The init process is set up manually, directly by the kernel. It is the first userland program to



.run and the last to be killed at shutdown

Want to see a cool instant blackscreen? If you're on macOS or Linux, save your work, open a

:terminal, and kill the init process (PID 1)

Shell session

$ sudo kill 1

Author’s note: knowledge about init processes, unfortunately, only applies to Unix-like systems
like macOS and Linux. Most of what you learn from now on will not apply to understanding

.Windows, which has a very different kernel architecture

Just like the section on execve, | am explicitly addressing this — | could write another entire

article on the NT kernel, but | am holding myself back from doing so. (For now.)

The init process is responsible for spawning all of the programs and services that make up your

.operating system. Many of those, in turn, spawn their own services and programs

init

Killing the init process kills all of its children and all of their children, shutting down your OS

.environment



Back to the Kernel

We had a lot of fun looking at Linux kernel code [back in chapter 3], so we're gonna do some more

.of that! This time we'll start with a look at how the kernel starts the init process
:Your computer boots up in a sequence like the following

The motherboard is bundled with a tiny piece of software that searches your connected disks .1
for a program called a bootloader. It picks a bootloader, loads its machine code into RAM, and

.executes it

Keep in mind that we are not yet in the world of a running OS. Until the OS kernel starts an init
process, multiprocessing and syscalls don't really exist. In the pre-init context, “executing” a

.program means directly jumping to its machine code in RAM without expectation of return

The bootloader is responsible for finding a kernel, loading it into RAM, and executing it. Some .2
bootloaders, like GRUB, are configurable and/or let you select between multiple operating
systems. BootX and Windows Boot Manager are the built-in bootloaders of macOS and

.Windows, respectively

The kernel is now running and begins a large routine of initialization tasks including setting up .3
interrupt handlers, loading drivers, and creating the initial memory mapping. Finally, the kernel

.switches the privilege level to user mode and starts the init program

We're finally in userland in an operating system! The init program begins running init scripts, .4

.starting services, and executing programs like the shell/Ul

Initializing Linux

On Linux, the bulk of step 3 (kernel initialization) occurs in the start_kernel function in init/main.c.
This function is over 200 lines of calls to various other init functions, so | won't include the whole
thing in this article, but | do recommend scanning through it! At the end of start_kernel a function

:named arch_call_rest_init is called


http://127.0.0.1:3000/how-to-run-a-program
https://www.gnu.org/software/grub/
https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/init/main.c
https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/init/main.c#L880-L1091

start_kernel @ init/main.c

1087 /* Do the rest non-__init'ed, we're now alive */
1088 arch_call_rest_init();

?What does non-__init'ed mean

The start_kernel function is defined as asmlinkage __visible void __init __no_sanitize_address

start_kernel(void). The weird keywords like __visible, __init, and __no_sanitize_address are all C

.preprocessor macros used in the Linux kernel to add various code or behaviors to a function

In this case, __init is a macro that instructs the kernel to free the function and its data from

) —

.memory as soon as the boot process is completed, simply to save space

How does it work? Without getting too deep into the weeds, the Linux kernel is itself packaged
as an ELF file. The __init macro expands to __section(".init.text"), which is a compiler
directive to place the code in a section called .init.text instead of the usual .text section.
Other macros allow data and constants to be placed in special init sections as well, such as

.__initdata that expands to __section(".init.data")

:arch_call_rest_init is nothing but a wrapper function

init/main.c

832 void __init __weak arch_call_rest_init(void)

833 {
834 rest_init();
835 }

The comment said “do the rest non-__init'ed” because rest_init is not defined with the __init

:macro. This means it is not freed when cleaning up init memory

init/main.c

689 noinline void __ref rest_init(void)
690 {


https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/init/main.c#L1087-L1088
https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/init/main.c#L832-L835
https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/init/main.c#L689-L690

:rest_init now creates a thread for the init process

rest_init @ init/main.c

695 /*

696 * We need to spawn init first so that it obtains pid 1, however
697 * the init task will end up wanting to create kthreads, which, if
698 * we schedule it before we create kthreadd, will OOPS.

699 */

700 pid = user_mode_thread(kernel_init, NULL, CLONE_FS);

The kernel_init parameter passed to user_mode_thread is a function that finishes some initialization
tasks and then searches for a valid init program to execute it. This procedure starts with some basic
setup tasks; | will skip through these for the most part, except for where free_initmenm is called. This

lis where the kernel frees our .init sections

kernel_init @ init/main.c

1471 free_initmem();

:Now the kernel can find a suitable init program to run


https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/init/main.c#L695-L700
https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/init/main.c#L1471

kernel_init @ init/main.c

1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525

/*
* We try each of these until one succeeds.
*
* The Bourne shell can be used instead of init if we are
* trying to recover a really broken machine.
*/
if (execute_command) {
ret = run_init_process(execute_command);
if (!ret)
return 0;
panic("Requested init %s failed (error %d).",
execute_command, ret);

}
if (CONFIG_DEFAULT_INIT[@] != '\0') {
ret = run_init_process(CONFIG_DEFAULT_INIT);
if (ret)
pr_err("Default init %s failed (error %d)\n",
CONFIG_DEFAULT_INIT, ret);
else
return 0;
3

if ('try_to_run_init_process("/sbin/init") ||
Itry_to_run_init_process("/etc/init") ||
Itry_to_run_init_process("/bin/init") ||
I'try_to_run_init_process("/bin/sh"))
return 0;
panic("No working init found. Try passing init= option to kernel. "

"See Linux Documentation/admin-guide/init.rst for guidance.");

On Linux, the init program is almost always located at or symbolic-linked to /sbin/init. Common

inits include systemd (which has an abnormally good website), OpenRC, and runit. kernel_init will

default to /bin/sh if it can't find anything else — and if it can’t find /bin/sh, something is TERRIBLY

.wrong

MacOS has an init program, too! It's called launchd and is located at /sbin/launchd. Try running that

.in a terminal to get yelled for not being a kernel


https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/init/main.c#L1495-L1525
https://systemd.io/
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http://smarden.org/runit/

From this point on, we're at step 4 in the boot process: the init process is running in userland and

.begins launching various programs using the fork-exec pattern

Fork Memory Mapping

| was curious how the Linux kernel remaps the bottom half of memory when forking processes, so |
poked around a bit. kernel/fork.c seems to contain most of the code for forking processes. The
:start of that file helpfully pointed me to the right place to look

kernel/fork.c

* 'fork.c' contains the help-routines for the 'fork' system call

%

(see also entry.S and others).

%

Fork is rather simple, once you get the hang of it, but the memory
* management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
*/

It looks like this copy_page_range function takes some information about a memory mapping and
copies the page tables. Quickly skimming through the functions it calls, this is also where pages are
set to be read-only to make them COW pages. It checks whether it should do this by calling a

function called is_cow_mapping

is_cow_mapping is defined back in include/linux/mm.h, and returns true if the memory mapping has

flags that indicate the memory is writeable and isn't shared between processes. Shared memory
doesn't need to be COWed because it is designed to be shared. Admire the slightly

:incomprehensible bitmasking

include/linux/mm.h

static inline bool is_cow_mapping(vm_flags_t flags)

{
return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;

Back in kernel/fork.c, doing a simple Command-F for copy_page_range yields one call from the

dup_mmap function... which is in turn called by dup_mm... which is called by copy_mm... which is finally


https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/kernel/fork.c
https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/kernel/fork.c#L8-L13
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https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/include/linux/mm.h#L1541-L1544
https://github.com/torvalds/linux/blob/22b8cc3e78f5448b4c5df00303817a9137cd663f/kernel/fork.c

called by the massive copy_process function! copy_process is the core of the fork function, and, in a
way, the centerpoint of how Unix systems execute programs — always copying and editing a

.template created for the first process at startup

cows & cows & cows

...In Summary

?So... how do programs run

On the lowest level: processors are dumb. They have a pointer into memory and execute

.instructions in a row, unless they reach an instruction that tells them to jump somewhere else

Besides jump instructions, hardware and software interrupts can also break the sequence of
execution by jumping to a preset location that can then choose where to jump to. Processor cores
can’t run multiple programs at once, but this can be simulated by using a timer to repeatedly trigger

.interrupts and allowing kernel code to switch between different code pointers

Programs are tricked into believing they're running as a coherent, isolated unit. Direct access to
system resources is prevented in user mode, memory space is isolated using paging, and system

calls are designed to allow generic I/0 access without too much knowledge about the true


https://www.youtube.com/watch?v=FavUpD_IjVY

execution context. System calls are instructions that ask the CPU to run some kernel code, the

.location of which is configured by the kernel at startup

?But... how do programs run

After the computer starts up, the kernel launches the init process. This is the first program running
at the higher level of abstraction where its machine code doesn't have to worry about many specific
system details. The init program launches the programs that render your computer’s graphical

.environment and are responsible for launching other software

To launch a program, it clones itself with the fork syscall. This cloning is efficient because all of the
memory pages are COW and the memory doesn't need to be copied within physical RAM. On Linux,

.this is the copy_process function in action

Both processes check if they're the forked process. If they are, they use an exec syscall to ask the

.kernel to replace the current process with a new program

The new program is probably an ELF file, which the kernel parses to find information on how to load
the program and where to place its code and data within the new virtual memory mapping. The

.kernel might also prepare an ELF interpreter if the program is dynamically linked

The kernel can then load the program'’s virtual memory mapping and return to userland with the
program running, which really means setting the CPU’s instruction pointer to the start of the new

.program’s code in virtual memory



Epilogue :7 (J.a$

.Congratulations! We have now firmly placed the “you” in CPU. | hope you had fun

| will send you off by emphasizing once more that all the knowledge you just gained is real and
active. The next time you think about how your computer is running multiple apps, | hope you
envision timer chips and hardware interrupts. When you write a program in some fancy

.programming language and get a linker error, | hope you think about what that linker is trying to do

If you have any questions (or corrections) about anything contained in this article, you should email

.me at |exi@hackclub.com or submit an issue or PR on GitHub

Ibut wait, there’s more ...

Bonus: Translating C Concepts

If you've done some low-level programming yourself, you probably know what the stack and the
heap are and you've probably used malloc. You might not have thought a lot about how they're

limplemented

First of all, a thread’s stack is a fixed amount of memory that's mapped to somewhere high up in

virtual memory. On most (although not all) architectures, the stack pointer starts at the top of the
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stack memory and moves downward as it increments. Physical memory is not allocated up-front
for the entire mapped stack space; instead, demand paging is used to lazily allocate memory as

.frames of the stack are reached

It might be surprising to hear that heap allocation functions like malloc are not system calls. Instead,
heap memory management is provided by the libc implementation! malloc, free, et al. are complex
procedures, and the libc keeps track of memory mapping details itself. Under the hood, the userland

.heap allocator uses syscalls including mmap (which can map more than just files) and sbrk

Bonus: Tidbits

.I couldn’t find anywhere coherent to put these, but found them amusing, so here you go

Most Linux users probably have a sufficiently interesting life that they spend little time

.Imagining how page tables are represented in the kernel

Jonathan Corbet LWN

:An alternate visualization of hardware interrupts

HELLOIT'S |
ME THE

| HAVE AN
IMPORTANT
MESSAGE



https://lwn.net/Articles/106177/

A note that some system calls use a technique called vDSOs instead of jumping into kernel space. |

.didn’t have time to talk about this, but it's quite interesting and | recommend reading into it

And finally, addressing the Unix allegations: | do feel bad that a lot of the execution-specific stuff is
very Unix-specific. If you're a macOS or Linux user this is fine, but it won't bring you too much closer
to how Windows executes programs or handles system calls, although the CPU architecture stuff is

.all the same. In the future | would love to write an article that covers the Windows world
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